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AERODYNAMIC CHAR 
SCOUT 133R VEHICLE DE 

WIND TUNNEL 

SUMMARY 

Bending moments and other associated par - 
measured on a Scout vehicle during a launch through high vel 
horizontal winds. 
revealed some unexplained discrepancies, Possible sources of error in 
the experimental data and predictions were considered; one of which is the 
predicted aerodynamic characteristics. A wind tunnel investigation was 
initiated, including supersonic force and pressure t e s t s ,  to better define 
the aerodynamics. 

Comparison of the measured data with predictions 

The purpose of this study was to reduce and analyze the wind 
tunnel tests data and establish aerodynamic coefficients in the pitch plane. 
Prior to this study, very little experimental data existed which defined the 
flow characteristics in the vicinity of protuberances and wiring tunnels. 
In addition to basic aerodynamic coefficients from the force test, detailed 
pressure and load distributions along the body were established from the 
pressure test. 
load distributions, total normal force, and total pitching moment of the 
body. Comparison of the normal forces from pressure and force tests 
resulted in agreement within 15%. Comparison of pitching moment data 
from the two tests resulted in larger  differences, Moment coefficients 
determined from the force data are considered m5re accurate than 
integrated pressure data because moments obtained Erom pressure 
distributions are too sensitive to Local loadings (i. e. ,  a small variation 
in loading on the heatshiefd may result i n  a large change in moment 
because of the long moment arm involved), 

Pressure coefficients were integrated to determine normal 

1.0 INTRODUCTION 

One of the most severe sources of loading on a launch vehicle 
is the horizontal wind. 
on ilaulch vehicles and results in substantial bending moments for long 
slender vehicles. 
measurements have been made are few. 

The wind produces high dynamic and static loadings 

The number of flight tests in which adequate load 
An exception is the measured data 



In view of these differences and because no experimental 
aerodynamic data existed for the particular vehicle configuration used for  
the flight loads measurements, wind twlnet force and presaure testa were 
conducted in the supersonic speed range with a model of the Scout 133R 
vehicle, Aerodynamic forces aad moments were measured during the 
force test as a function of angle of attack and Mach nurnber, and n ~ f n e r o ~ s  
pressure measurements were made on the model surface during the 
pressure tests. 
the wind tunnel data, and better define the aerodynamic derivatives and 
normal load distributions. 

The study effort reported herein was initiated to reduce 

The ultima$@ goal is to eventually prove the validity of a 
technique f o r  predicting loads on launch vehicles and spacecra€t. 
next step required ta accomplish this will be to use the revised aerodynamic 
data generated in this study and re-calculate vehicle loads for comparison 
t o  flight measurements, 

The 

2 .0  DISCUSSION 

This study involved the reduction and analysis of data from force 
and pressure wind tunnel tests of Scout 133R models. 
coefficients and derivati 
and the pressure test da 
body, to obtain the same parameters. 
reduction and analysis techniques are presented in the following paragraphs, 

2. L 

2 .1 .1  Test  F acility 

Aerodynamic 
ere derived directly from the force test  data, 
e plotted and inkegrated over the length o€ the 

Discussion of the tests, and data 

Both tests w e r e  conducted at the LTV Vought Aeronautics 
Company High Speed Wind  Tunnel in the supersonic test section. This 

2 



facility is an atmospheric exhaust, 
foot test section size. 
changeable t t section and di 
range of - 5  to 5.0. The nom 
adjustable contour type, coria 

and two fixed walls. 

2, l .  2 M,odels and Instru tion 

The tunnel i 

Aerodynamically, the force and 
but the force model was instrumented with a st rain gage balance and the 
pressure model was instrumented with pressure transducers, Scanivalves, 
etc. Both models were 1/15 scale models of the Scout 133R vehicle 
(Figure 1). 

2.1.2.1 Force Test 

The model was mounted on a sting using a six component internal 
s t ra in  gage balance. 
moments acting on the model, and fin number one was instrumented to 
measure normal force, pitch plane moment, and root bending moments 
acting on the fin in the presence of the body. 
1 and 3 were movable and were deflected a t  various angles during the test. 

This balance was used to measure total forces and 

Fin tip controls of fins 

In order to present some means of determining data accuracies, 
static accuracies of the VB-13 six component balance are presented. 
tabulated accuracies were obtained by computing a root mean square devia- 
tion between applied and measured loads over the maximum load range 
and ratioed to the maximum balance design limits. Results in the pitch 
plane a re  as follows: 

The 

Normal force 0. 09% 
Pitching moment 0 , 5 0 %  

This means that the best possible accuracy of normal force and pitching 
moments a r e  0. 09% and 0. 5070 respectively of the balance maximum load 
limits (1500 lb. normal force and 2400 in Ib. pitching moment), Or,  in 
coefficient form CN = t .023, C, = t. .IO. These values apply for static 
loads; therefore, the t e s t  ( o r  dynamg) loads a re  probably not as accurate. 
The fin balance data accuracy was estimated to be + 3% for normal force, 
or CN = t ,0412, and Mach number accuracy was - +%. 50%. 

The 133R vehicle included a nose boom which is not standard for 
the Scout configuration; therefore, the model included a removable boom 
in  aligned and inclined ( 3 0 )  positions. Also included were the standard 
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- 
wiring tunnels, protuberances, etc. 
included combinations of bo 

The various configurations tested 

2.1.2.2 Press 

The pressure mod 
gage balance. Removable 
positions we re included, with the 
etc., and the fins were attached 

The model was instrumented to provide body circumferential and 
Circumferentially arranged pressure longitudinal pressure distributions. 

orifices were located at  38 longitudinal stations, with most stations located 
along the forward section of the model. Station number one had 4 pressure 
orifices, stations 9, 20-25, and 30 had 16 orifices each, and the remaining 
stations had 8 orifices each, totaling 364 taps. 
locations are presented in Table I1 and Figure 1. 
was accomplished using an eight-head Scanivalve pressure switch mounted 
aft of the model in the tes t  section. 
model pressure orifices were routed through the model and hollow sting 
to the Scanivalve. Each Scanivalve head could sample 48 pressures  and 
was instrumented with a pressure transducer. 
were made on all transducers during the test using a precision manometer. 
Al l  calibrations checked within - t 0.50J0, 

Model pressure orifice 
P res su re  data sampling 

Pressure tubing connected to the 

Three pressure calibrations 

2.1.3 Test Procedures 

2.1.3.1 Force Test 

The model configuration was tested a t  Mach numbers of 1.61, 2.01,. 
2.41, 2.61, and 2.80 and the corresponding test  conditions as show0 in 
Table 111. A typical data run included taking model weight tares,  wind- 
off zeros, wind on zeros, and data measurements. After flow in the tunnel 
was established and wind-on zeros were taken, the model was pitched to 
the maximum negative angle of attack. 
maximum positive angle of attack a t  a rate of 2 degrees p e r  second and 
data were sampled continuously a t  10 points pes second. 
returned to zero angle of attack and a wind-on zero measurement was taken 
again. The test was conduct over a n  angle of attack range of -5' to t4O. 
The measured data were dig ed and recorded on magnetic tape. A t  the 
end of each run the data were transferred from tape to punched cards  for 
reduction to proper units on a computer. Static force and moment data 
were reduced to obtain non-dimensional force and moment coefficients. 

The model was then pitched to the 

The model was 
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The model was tested b o a  upright and inverted to determine 
angularity of the tunnel flow, and 
were then applied t o  the. data. This pro 
figuration8 and Mach numbers b 

wmre ruled invalid b 
the aft end o f  the 

2.1.3.2 re Teat 

The, $est was cbndu 
in Tabla 3, at Mach numbers 
M = 1.61 data are questionable because of the reflected bow ahock imping- 
ment on the body,) The configurations were chosen to yield the effects of 
wiring twnels, protuberances, and nose boom on the pressure distribu- 
tions. The run schedule and t e s t  conditions are defined in Table IV. 
Each run began by obtaining dati at zero angle of attack, then pitching to 
other angles o€ attack (tested a increments between -40 and +LEO) and 
taking measurements. Several pressures were monitored to make sure 
the free-stream conditions had stabilized before taking data, then data 
were sampled at 20 times per second until readings were obtained f rom 
all static taps. The data were digitized and recorded on magnetic tape, 
then at the conclusion of a run the data were transferred to computer 
cards for processing to tabulated output in coefficient (Cp) form, 
oscillograph traces w e r e  also monitor& t o  insure that the Scanivalves 
and pressure transducers were functioning properly, 
corrected for tunnel flaw angularity in the same manner as the force tes t  
(i, e., angle of attack correction), 

On-line 

The data were  

2.2 DATA REDUCTION AND ANALYSIS, 

2.2, I . Force T e s t  Data 

The primary purpose of this study was to  establish vehicle 
longitudinal aerodynamic data by correlation of force test measurements 
and the corresponding vafues abtained by integration of pressure distri- 
butions, Therefore, the following force tes t  data are omitted from this 
report: side force, yawing moment, railing moment, axial force, fin 
pitch plane moments, and €in root bending moment, 

The aerodynamic coefficients obtained during the force test: 
were presented in tabulated and machine-plotted format8 at3 a function of 
angle of attack for the various Mach numbera and configurations. To 
obtain the vehicle d 
plotted curves between the angles of attack +Za, The accuracy was 
checked by handplotting some cases from th; tabulated data, sfoping the 

tivea CN, and Cma the! slopes were read from the 
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cu~ves,  and comparing the derivatives to those obtained from the original 

urves. To oMai 

2' 2.2 Pressure Test  Data 

A computer program was developed to analyze pressure data 
from the wind tunnel test. Generally, this inLofved exarninakion of &e data, 
circumferential, integration of pressure coefficients at each body station to 
obtain local loading, and integration of Local loading over the length 
a€ the body to determine aerodynamic derivatives. Test data consisting of 
pressure coefficients, pressure tap identification, free stream Mach 
number, and angles af attack were transferred to punch cards preparatory 
to  the plotting and integration tasks described below, 

\ 

For a given configuration, Mach number (M), and angle of 
attack fa jF focal pressure coefficients' (Cp) at each station were machine- 
plotted as a function of tap angular location { +). The plotted data were 
reviewed and erroneous data points corrected. Questionable points were 
first checked for keypunch accuracy and, i f  correctly punched, obvious 
erroneous points we re extracted and replaced with interpolated pres sure 
coefficients, 

To facilitate integration of the corrected pxessure data, it was 
necessary to estimate suppZemental C p  values far angular limits not 
defined by pressure taps, i. e , ,  for IF, = Uo and i80u (or 3500 where the 
taps encircled the body). 
repeating the Cp of the 4 nearest the 'appropriate limit. 
was selected over a, linear extrapolation technique which calculated a 
supplemental Cp from the two data points nearest the angular limit. Com- 
parison of results obtained by the two metbode showed minor differences 
except where the calculations involved sudden pressure, changes in the 
vicinity of protuberances. 
data indicated the repeated-paint result would generaliy give the better 
approximation to the actual (unknown) value. 

The additional values were established by merely 
This appraach 

For these situations, examinatiofi of the plotted 
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The first integration produced local normal force coefficients 

normal forces due to the protuberances and tunnels were  ,calculated 
separately using a Second Order Shock Expansion technique (Reference 2). 
Basically this involved definition of the local Mach numbers in the vicinity 
of the wiring tunnels, etc., then analysis of the wiring tunnel a s  one half 
a body of revolution. These increments were found to be very small 
compared to the total local normal forces. A trapezoidal integration 
scheme w a s  selected to perform the local integrations when it was found 
the irregularly-spaced intervals between tap angular positions made a 
more sophisticated algorithm impractical. 
computed at each a! of a given configuration and M. 

Local force Coefficients were 

Eq. (1) i s  based on pressure  taps lying in the range O0e#<- 3600, 
but tap arrangements permit a 3600 integration only a t  model axial stations 
3, 20-25, and 30 (see F igu re  1). All  other stations have taps in the range  
OQr#.erl8O0, which suggests doubling the integral (evaluated from+= 00 to 
1800) to determine the remaining cNS values. A factor of two was applied 

to all cross-sections with (1) OCq+-=180" and (2) symmetry with respect to 
a vertical plane through the model centerline. 
calculation were Stations 18, 19, 26, and 27 when the wiring tunnels were 
in place (Figure 1). 
cri terion at Stations 19 and 26 while sufficiently affecting Stations 18 and 27 

Equation (1) at the excluded stations was evaluated only between 4 = 00 
and 180O. 
special treatment as described below. 

Not included in this 

The presence of the tunnels violates the symmetry 

ove them from symmetry considerations also. The integration by 

Normal force loading for  the full circumference is provided by 

a t  a = Oo. A 

first-order,  linear curve-fit was used for data over the range of - 2 O t c ~ d 2 ~ .  
A linear variation over this range is consistent with the general behavior 
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of the integrated pressure  data as well  as the technique used to determine 

a1 force coefficients for the tapped half-body 
(0°&~s1800)  were curve-fitted to a f i r s t  order  polynomial. 

Normal force data points w e r e  reflected with respect to  
the cNS and cy axes. 

The reflected data points were  curve-fitted. 

The polynomial coefficients f rom (i) and (iii) were added 
to get a CN S and c 

The m i r r o r  symmetry used in this analysis is evident in 
the model sketch shown,in Figure (1). 

, 

S for the full body circumference. 
0 Nar 

Total vehicle coefficients were obtained by integrating c S 
0 

N 

and c S along the body axis according 
Nar 

and 

to 

BX 

dX 

where X = 0 is the spherical nose tip and X = X1 is the total body length. 
The values of c S and c 

zero, and linear variation of loading with X was assumed between p res su re  
measurement stations. Comparisons with previous Scout load distributions 
(reference 1) indicate the assumption is a reasonable one. The total vehicle 

S a t  the upper and lower limits were se t  equal to 
N 0 Na 

t e r  of pressure  location, was calcul as follows: 
CP 
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.- 

and the corr 

= longitudinal station of the mome 
center ref where: X 

2.3 RESULTS 

2.3.1 Force  Test Aerodynamic Parameters 

The aerodynamic derivatives C and C are presented 

in Figures 2 and 3 respectively for  all configuration, a s  a function of 
Mach number. 
reflected bow shock problem discussed in Section 2.1.3. In analysis of 
the model build-up i t  can be seen that addition of the fins approximately 
doubles the  magnitude of C and results in a stabilizing moment about 

the reference center of Station 427. 8. The effects of adding the aligned 
nose boom resulted in increased C and a destabilizing moment. Adding 

NCY 

The M = 1.61 data are not included because of the 

NCY 

NCY 

protuberances and wiring tunnels results in a positive increment to  C 

and negligible effects on C 
were very small and inconsistent. 

N,r 
The effects of an inclined nose boom (3O) 

ma' At some Mach numbers the incremental 
C was positive, resulting in destabilizing moments, and at other Mach 

NFY 
numbers the contributions were reversed. 

on the boom and the corresponding effects on the vehicle nose. 

This phenomenon is discussed in 
n 2.3.2, but basically it appears to be a result  of flow separation 

The coefficients C and C are presented in Figure 4. The 
N* mO 

des  of C are  relatively small for  all configurations, but the 
NO 

corresponding C values are ra ther  la rge  fo r  some configurations. The 
mO 

measurement inaccuracies discussed in Section 2.1.2 must be considered 
in  drawing conclusions f rom these data. 
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Incremental C values for the various configurations may be . 
- 

analyses of C 

deflected to a 30 positive inclination, the incremental C 

expected. 
increments. 
had a positive incidence misalignment, and it a lso indicates that the 
positive C 

and values shown in Reference 1. When the boom is 
m0 

is positive, as 
mO 

Next ,  the fins were removed and this resulted in small positive 
This tends to  substantiate the belief that the fins may have 

caused by the launch fitting fairing is attributed more to 
m0 

high pressures  acting on the body than on the fins. 

Fin CN and C a r e  presented in Figure 5. C was deter-  
NO Na FINS CY 

mined from the main model balance (CNUFINS = C N a  FINS ON - CNaFINs 

OFF) and fin internal balance. 
differences between the two are attributed to  fin carryover load on the body, 
which is not included in the fin balance measurements. 

Both sets  of data a r e  presented, and 

Control effectiveness parameters  C N  and Cm a r e  presented 
The incremental normal force coeqficients for 2 fin tips in Figure 6. 

deflected were obtained from the vehicle balance. 
also measured by the fin internal balance, and the value doubled for com- 
parison to the vehicle balance measurements. 

The increment was  

Fin internal balance measurements of normal force coefficient 
are also presented i n  Figure 7 for tip deflections of 00 and angles of attack 
of -5O, Oo, +lo, and +50 for the model configuration including protuberances, 
fins, and the aligned nose boom. 

2 . 3 . 2  Normal Load Distributions 

Normal load distributions on the body a r e  presented in Figures 
8 through 23 for the various configurations and Mach numbers. (Note 

10 



scale changes on par ts  b and c of each figure. ) These were established 
from th4- p re s su re  data using the' integration technique described in - 
Section 2 . 2 . 2 .  

Clean body distribution 

se of wind tu  

tuberances are very loc 
wiring tunnels simply r 

along the body. 

Load distributions for the configuration including protuberances , 
wiring tunnels and the nose boom (aligned at O o )  are presented in  Figures 
16 through 19. Effects of the nose boom a r e  confined to the heatshield. 

S is increased substantially at the nose tip, but loadings along the 

heatshield a r e  reduced. It i s  believed that flow separation on the nose 
boom is the major contributing factor to this unusual loading. 
distributions are shown for this configuration, representing basic data 
obtained during the tes ts  and additional data f rom repeat runs. (M = 2 . 8 0  
repeatability data w a s  invalid because of a data reduction e r ro r .  ) Trends 
of the two sets  of data are in agreement and the only significant differences 
are in magnitudes of the M = 2.01 data. 

C N a  

Two load 

Normal load distributions with the nose-boom inclined a t  3 O  

f rom the body centerline a r e  shown in Figures 20 through 23. The only 
significant effect is seen near the nose tip, where the loading is decreased. 
This effect is present because the 3 O  incline and the corresponding flow 
separation results in a higher effective angle of attack of the nose tip. 
The curve cN VS.Q a t  the station near  the nose tip is  linear between t2O 
and begins to level off above 20; therefore, the value of c 
because the effective Q! is  greater than 2O. 

- 
is decreased 

NQ! 

2 . 3 . 3  P r e s s u r e  Test Aerodynamic Parameters  

Aerodynamic coefficients were obtained f rom pressure  tes t  

meters include C , and C of the body, excluding fins. 
data by utilizing the integration technique described in Section 2 . 2 . 2 .  The 

NO 

and C are presented in Figures 24 and 25 as a 'function cNcY 
of Mach number for the four configurations tested. 
for  the clean configuration, and the M = 2.80  repeat run for the complete 

The M 3 2 . 6 1  data 

1 1  



configuration were  eliminated because of data reduction e r rors .  Effects 

on thc nose 

increment are questionable based o 
cients and flow separation on the boom. 

2.3.4 Correlation of Aerodynamic Data 

Correlation of the aerodynamic parameters  obtained f rom force 
test data and integrated pressure  tes t  data are presented in Figures 27 
through 29 for the body alone. The measured C C , and C 

N, ma! NO 
f rom the force tes t  a r e  presented for  the configuration including protu- 
berances and wiring tunnels and nose boom aligned at Oo,  with fins 
removed. These data a r e  compared to the integrated pressure  data for 
the configurations including protuberances and wiring tunnels, nose boom 
aligned a t  Oo, and fins. (Note: P res su re  integrations were over the body 
only. Therefore, the contribution of fins to the parameters  a r e  not 
included. ) Two sets  of results a r e  presented from the pressure  test ,  
which includes data f rom the basic wind tunnel runs and hysteresis runs. 

Comparison of CN, i s  shown in Figure 27, and indicates 

agreement within about 1570, with the exception of one point a t  M = 2.01. 
Differences in C 

ma! ma 
obtained by integration of pressure  distributions is v e r y  sensitive to  local 
load distribution on the heatshield and the aft end of the body. It would be 
possible to obtain agreement with the force data by adjusting the load 
distributions a small  percentage. Therefore, the force test  data should 
be used in defining the aerodynamic derivatives. Comparison of the two 
sets of data for C a r e  presented in Figure 29. 

(Figure 28) a r e  much larger ,  probably because C 

N* 
Another consideration for differences between the force data 

and integrated pressure  data involves the flow angularity that existed in 
the tunnel during both tests. Corrections for  the flow angularity essentially 
involved shifting the angle of attack scale an  amount determined by 
rerunning the force model in the upright and inverted positions. However, 

12 



the local angle of attack along the model f rom nose to  base may have been 

pressures a 
small degree of 

coefficients were  dete 

and other protuberances were determined. 
destabilize the configuration slightly, but differences in  forces and 
moments due to the wiring tunnels and other protuberances were  less than 
the repeatibility of the measurements. 

The nose boom appears to  

Running load distributions defined f rom the p re s su re  measure- 
ments were substantiated by comparison with the total normal force 
coefficient determined f rom force measurements. However, small 
adjustments to the running load distributions are required to obtain good 
agreement with pitching moment coefficients f rom the force test. 
recommended that the adjustments be made and the running load dis t r i -  
bution be refined to conformance with measurements f rom the force test. 

It is 

Predicted aerodynamic characterist ics (Reference 3)  were used 
in a previous load analysis of the flight vehicle (Reference 4), and did not 
include data for  all flow conditions obtained in the present study. 
experimental data presented herein should be compared to  the predicted 
data and another loads analysis conducted utilizing the experimental data. 
This would serve to increase the confidence level in the validity of the 
technique for predicting flexible body loads and bending moments. 

The 
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Figure 24. - Vehicle Normal Force Coefficient 
Derivatives (Pres sure Test Data). 
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Figure 26.  - Vehicle Normal Force Coefficient 
at LY = Oo (Pressure Test Data) 
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Figure 28. - Correlation of Vehicle Pitching 
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